By Topic

Investigation on Welding Arc Interruptions in the Presence of Magnetic Fields: Welding Current Influence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruham Pablo Reis ; Centre for Research and Development of Welding Processes, Federal University of Uberlândia , Uberlândia, Brazil ; Américo Scotti ; John Norrish ; Dominic Cuiuri

Arc interruptions and, therefore, oscillation in the amount of energy and molten wire delivered to the plate have been observed during tandem pulsed gas metal arc welding (GMAW). It appears that these instabilities are related to the magnetic interaction between the arcs. In order to clarify the possible mechanisms involved, this paper tries to mimic the tandem GMAW arc interruptions. External magnetic fields were dynamically applied to GTAW arcs in constant current mode to verify their resistance to extinction as a function of current level and direction of deflection. High-speed filming was carried out as an additional tool to understand the extinction mechanism. The influence of the welding current level on the arc resistance to extinction was established: The higher the welding current, the more the arc resists to the extinction. The arc deflection direction has minor effect, but arcs deflected backward have more resistance to extinction.

Published in:

IEEE Transactions on Plasma Science  (Volume:40 ,  Issue: 3 )