By Topic

Engineered Carbon-Nanotubes-Based Composite Material for RF Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Emmanuel Decrossas ; Department of Electrical Engineering , University of Arkansas, Fayetteville, USA ; Mahmoud A. El Sabbagh ; Samir M. El-Ghazaly ; Victor Fouad Hanna

Electrical properties of nanocomposite materials are extracted to investigate the possibility to engineer novel material for microwave applications. A measurement setup is developed to characterize material in a powder form. The developed measurement technique is applied on nanoparticles of alumina, carbon nanotubes (CNTs), and composite mixture of carbon nanotubes and alumina. The effect of packing density on dielectric constant and loss tangent is thoroughly characterized experimentally. The obtained results show that the real part of effective permittivity may be considerably enhanced by increasing the percentage of conducting nanoparticles. In addition, it is possible to decrease the loss in a material by mixing low-loss dielectric nanoparticles powder in a lossy material.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:54 ,  Issue: 1 )