By Topic

A comparison study of the numerical integration methods in the trajectory tracking application of redundant robot manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Emre Sanyildiz ; Istanbul Technical University, 34469 Istanbul, Turkey ; Hakan TemeltaƟ

Differential kinematic has a wide range application area in robot kinematics. The main advantage of the differential kinematic is that it can be easily implemented any kind of mechanisms. In differential kinematic method, Jacobian is used as a mapping operator in the velocity space. The joint velocities are required to be integrated to obtain the pose of the robot manipulator. This integration can be evaluated by using numerical integration methods, since the inverse kinematic equations are highly complex and nonlinear. Thus, the performances of the numerical integration methods affect the trajectory tracking application. This paper compares the performances of numerical integration methods in the trajectory tracking application of redundant robot manipulators. Four different and widely used numerical integration methods are implemented to the trajectory tracking application of the 7-DOF redundant robot manipulator named PA-10 and simulation results are given.

Published in:

Electrical and Electronics Engineering (ELECO), 2011 7th International Conference on

Date of Conference:

1-4 Dec. 2011