By Topic

Symbol error rate analysis of relay-based wireless systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Abualhaol, I.Y. ; Khalifa Univ., Sharjah, United Arab Emirates

In this paper, the symbol error rate (SER) performance of a relay-based amplify-and-forward (AF) system is analyzed over fading channels . The relay power-gain is optimized with the objective of maximizing the received signal-to-noise-ratio (SNR) at the destination, given that the fading statistics of the links are known at the relay node. The Gaussian finite mixture is utilized to mathematically formulate, in a simple and unified way, the statistics of the received SNR at optimal relay power-gain. These statistics include the probability density function (pdf) and the moment generating function (MGF). Using this technique, the SER for coherent and differentially coherent modulations are derived. Monte Carlo simulation results are presented to validate the derived expressions.

Published in:

Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on

Date of Conference:

11-14 Sept. 2011