Cart (Loading....) | Create Account
Close category search window
 

Electrical signal processing techniques in long-haul fiber-optic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Winters, J.H. ; AT&T Bell Lab., Holmdel, NJ, USA ; Gitlin, R.D.

The potential for electrical signal processing to mitigate the effect of intersymbol interference in long-haul fiber-optic systems is discussed. Intersymbol interference can severely degrade performance and consequently limit both the maximum distance and data rate of the system. Several techniques for reducing intersymbol interference in single-mode fiber systems with single-frequency lasers are presented, and those techniques which are appropriate at high data rates in direct coherent detection systems are identified. The performances of linear equalization (tapped delay lines), nonlinear cancellation (variable threshold detection), maximum-likelihood detection, coding, and multilevel signaling are analyzed. The results for a simulated binary 8-Gb/s system show that simple techniques can be used to reduce intersymbol interference substantially, thereby increasing the system margin by several decibels. A six-tap linear equalizer increases the dispersion-limited distance (due to chromatic or polarization dispersion) by 20% (or reduces the optical power penalty by as much as a factor of two) in direct detection systems, even when the distortion is nonlinear. A nonlinear cancellation technique (adjusting the decision threshold in the detector based on previously detected bits) can more than double the dispersion-limited distance and/or data rate

Published in:

Communications, IEEE Transactions on  (Volume:38 ,  Issue: 9 )

Date of Publication:

Sep 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.