By Topic

Manipulation Detection on Image Patches Using FusionBoost

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong Cao ; Institute for Infocomm Research (I2R), A*STAR, Singapore ; Alex C. Kot

In this paper, we propose a novel manipulation detection framework for image patches using a fusion procedure, called FusionBoost, in conjunction with accurately detected derivative correlation features. By first dividing all demosaiced samples of a color image into a number of categories, we estimate their underlying demosaicing formulas based on partial derivative correlation models and extract several types of derivative correlation features. The features are organized into small subsets according to both the demosaicing category and the feature type. For each subset, we train a lightweight manipulation detector using probabilistic support vector machines. FusionBoost is then proposed to learn the weights of an ensemble detector for achieving the minimum error rate. By applying the ensemble detector on cropped photo patches from different image sources, large-scale experiments show that our proposed method achieves low average detection error rates of 2.0% to 4.3% in simultaneously detecting a large variety of common manipulation attempts for image patches from several different source models. Our framework shows good learning efficiency for highly imbalanced tasks. In several patch-based detection examples, we demonstrate the efficacy of the proposed method in detecting image manipulations on local patches.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:7 ,  Issue: 3 )