Cart (Loading....) | Create Account
Close category search window

Microwave Satellite Data for Hydrologic Modeling in Ungauged Basins

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Khan, S.I. ; Sch. of Civil Eng. & Environ. Sci., Univ. of Oklahoma, Norman, OK, USA ; Yang Hong ; Vergara, H.J. ; Gourley, J.J.
more authors

An innovative flood-prediction framework is developed using Tropical Rainfall Measuring Mission precipitation forcing and a proxy for river discharge from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) onboard the National Aeronautics and Space Administration's Aqua satellite. The AMSR-E-detected water surface signal was correlated with in situ measurements of streamflow in the Okavango Basin in Southern Africa as indicated by a Pearson correlation coefficient of 0.90. A distributed hydrologic model, with structural data sets derived from remote-sensing data, was calibrated to yield simulations matching the flood frequencies from the AMSR-E-detected water surface signal. Model performance during a validation period yielded a Nash-Sutcliffe efficiency of 0.84. We concluded that remote-sensing data from microwave sensors could be used to supplement stream gauges in large sparsely gauged or ungauged basins to calibrate hydrologic models. Given the global availability of all required data sets, this approach can be potentially expanded to improve flood monitoring and prediction in sparsely gauged basins throughout the world.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 4 )

Date of Publication:

July 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.