By Topic

Protein-Protein Interaction extraction based on ensemble kernel model and active learning strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lishuang Li ; Dalian Univ. of Technol., Dalian, China ; Degen Huang ; Min Wang

Protein-Protein Interaction (PPI) extraction from biomedicine literature can supply the biomedicine researcher with useful information rapidly. This paper presents a PPI extraction system based on the ensemble kernel model and active learning. Firstly, the ensemble kernel within SVM classifier combines the lexical feature-based kernel and the path-based kernel. Experimental results show that the F-score of PPI extraction using ensemble kernel model on AIMED, IEPA and BCPPI corpora are 64.50%, 69.74% and 60.38% respectively with 10-fold cross-validation, which are better than the lexical feature-based kernel and the path-based kernel separately. As the above ensemble kernel model based on SVM needs large labeled data and it is expensive to label data manually, we integrate active learning into the ensemble kernel model. The active learning method uses the uncertainty-based sampling strategy. The experimental results integrating the active learning show that the F-score on AIMED, IEPA and BCPPI corpora are 65.24%, 70.19% and 61.87% respectively, which are better than those using the ensemble kernel model with the passive learning, and meantime reduce the labeling data by 20%, 30% and 30%, respectively.

Published in:

Natural Language Processing andKnowledge Engineering (NLP-KE), 2011 7th International Conference on

Date of Conference:

27-29 Nov. 2011