By Topic

Sequence estimation techniques for digital subscriber loop transmission with crosstalk interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joshi, V. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont., Canada ; Falconer, D.D.

The use of reduced-state sequence estimation techniques in a digital subscriber loop receiver is discussed. These techniques offer a potential performance improvement over conventional equalization techniques such as decision feedback equalization (DFE). Stationary and cyclostationary NEXT noise models are described. The theoretical performance obtainable from a Viterbi algorithm receiver with stationary white Gaussian noise, stationary NEXT, and cyclostationary NEXT noise models is estimated, and the reduced-state decision feedback sequence estimation and M algorithms are reviewed. It is shown that the improvement can be especially significant in the presence of cyclostationary crosstalk because of the freedom that sequence estimation receivers afford in the choice of receiver sampling phase. This advantage is evaluated for Viterbi algorithm receivers. By simulation of two practical reduced-state sequence estimation receivers, it is demonstrated that, in the presence of cyclostationary crosstalk, a substantial increase in maximum loop range (or equivalently, maximum bit rate) may be achievable compared to conventional DFE equalization

Published in:

Communications, IEEE Transactions on  (Volume:38 ,  Issue: 9 )