By Topic

Incremental Elliptical Boundary Estimation for Anomaly Detection in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Moshtaghi, M. ; Dept. of Comput. Sci. & Software Eng., Univ. of Melbourne, Melbourne, VIC, Australia ; Leckie, C. ; Karunasekera, S. ; Bezdek, J.C.
more authors

Wireless Sensor Networks (WSNs) provide a low cost option for gathering spatially dense data from different environments. However, WSNs have limited energy resources that hinder the dissemination of the raw data over the network to a central location. This has stimulated research into efficient data mining approaches, which can exploit the restricted computational capabilities of the sensors to model their normal behavior. Having a normal model of the network, sensors can then forward anomalous measurements to the base station. Most of the current data modeling approaches proposed for WSNs require a fixed offline training period and use batch training in contrast to the real streaming nature of data in these networks. In addition they usually work in stationary environments. In this paper we present an efficient online model construction algorithm that captures the normal behavior of the system. Our model is capable of tracking changes in the data distribution in the monitored environment. We illustrate the proposed algorithm with numerical results on both real-life and simulated data sets, which demonstrate the efficiency and accuracy of our approach compared to existing methods.

Published in:

Data Mining (ICDM), 2011 IEEE 11th International Conference on

Date of Conference:

11-14 Dec. 2011