By Topic

Learning with Minimum Supervision: A General Framework for Transductive Transfer Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bahadori, M.T. ; Electr. Eng. Dept., Univ. of Southern California, Los Angeles, CA, USA ; Yan Liu ; Dan Zhang

Transductive transfer learning is one special type of transfer learning problem, in which abundant labeled examples are available in the source domain and only unlabeled examples are available in the target domain. It easily finds applications in spam filtering, microblogging mining and so on. In this paper, we propose a general framework to solve the problem by mapping the input features in both the source domain and target domain into a shared latent space and simultaneously minimizing the feature reconstruction loss and prediction loss. We develop one specific example of the framework, namely latent large-margin transductive transfer learning (LATTL) algorithm, and analyze its theoretic bound of classification loss via Rademacher complexity. We also provide a unified view of several popular transfer learning algorithms under our framework. Experiment results on one synthetic dataset and three application datasets demonstrate the advantages of the proposed algorithm over the other state-of-the-art ones.

Published in:

Data Mining (ICDM), 2011 IEEE 11th International Conference on

Date of Conference:

11-14 Dec. 2011