By Topic

Algorithms for Mining the Evolution of Conserved Relational States in Dynamic Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahmed, R. ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Karypis, G.

Dynamic networks have recently being recognized as a powerful abstraction to model and represent the temporal changes and dynamic aspects of the data underlying many complex systems. Significant insights regarding the stable relational patterns among the entities can be gained by analyzing temporal evolution of the complex entity relations. This can help identify the transitions from one conserved state to the next and may provide evidence to the existence of external factors that are responsible for changing the stable relational patterns in these networks. This paper presents a new data mining method that analyzes the time-persistent relations or states between the entities of the dynamic networks and captures all maximal non-redundant evolution paths of the stable relational states. Experimental results based on multiple datasets from real world applications show that the method is efficient and scalable.

Published in:

Data Mining (ICDM), 2011 IEEE 11th International Conference on

Date of Conference:

11-14 Dec. 2011