By Topic

Shape Optimization of Multistage Depressed Collectors by Parallel Evolutionary Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Salvatore Coco$^{1}$ DIEEI,, University of Catania,, Catania,, Italy ; Antonino Laudani ; Giuseppe Pulcini ; Francesco Riganti Fulginei
more authors

In this paper a novel parallel meta-heuristic algorithm called MeTEO is presented, applied to the shape optimization of multistage depressed collectors, simulated by means of a Finite Element collector and electron gun simulator, COLLGUN, which uses the Constructive Solid Geometry for the description of the device shape. METEO is a hybrid algorithm composed by three different heuristics: FSO (Flock of Starlings Optimization), PSO (Particle Swarm Optimization), and BCA (Bacterial Chemotaxis Algorithm); it performs the optimization using both the topological and the metric rules and offers a natural parallel implementation that allows speeding up the whole process of optimization by the fitness modification (FM).

Published in:

IEEE Transactions on Magnetics  (Volume:48 ,  Issue: 2 )