By Topic

Thickness and Conductivity Analysis of Molybdenum Thin Film in CIGS Solar Cells Using Resonant Electromagnetic Testing Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yen-Lin Pan ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Cheng-Chi Tai

This paper presents an analysis method that combines the nondestructive resonant electromagnetic testing and the mathematical model for determining the thickness and conductivity of molybdenum (Mo) thin layer in copper indium gallium selenide (CIGS) solar cells. This technique is demonstrated for Mo layers (0.5-1.5 μm) over glass substrate. The impedance of probe coils and sheet resistance were measured by using 4294A Hewlett-Packard impedance analyzer and RT-9 Napson four-point probe to verify the analytical data. Analytic solutions for calculating the coil impedance of EC probe above Mo thin layers are presented. The conductivity is considered with sheet resistances and thicknesses. The estimation of thickness and sheet resistance of Mo thin layers is based on the linear regression of the measured data and theoretical calculations. As anticipated, the proposed method shows that the coil's impedance largely relates to the sheet resistance and the thickness of Mo layers. Two Mo layers with different manufacturing process and unknown characteristics also inspected and analyzed for comparison. The results show that the agreement between experimental and analytical data is within a small deviation.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 2 )