Cart (Loading....) | Create Account
Close category search window
 

Piezoelectric cantilever prototype for energy harvesting in computing applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Beker, L. ; Micro & Nanotechnol. Grad. Program, Middle East Tech. Univ., Ankara, Turkey ; Kulah, H. ; Muhtaroglu, A.

This paper presents a piezoelectric energy harvester (PEH) to convert vibrations to electrical power. A unimorph cantilever beam is used to generate voltage on piezoelectric material bonded close to the anchor of the cantilever beam. A 4.85 × 1 × 0.04 cm structural layer with piezoelectric material yields peak-to-peak voltage of 64 V at the resonance frequency of the structure. The empirically confirmed maximum power output is close to 0.5 mW. The results from validation data on the observed structure has been correlated to the simulations in finite element method (FEM) program using piezoelectric analysis tools.

Published in:

Energy Aware Computing (ICEAC), 2011 International Conference on

Date of Conference:

Nov. 30 2011-Dec. 2 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.