By Topic

A Fast Robust Optimization Methodology Based on Polynomial Chaos and Evolutionary Algorithm for Inverse Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. L. Ho$^{1}$ Department of Electrical Engineering,, The Hong Kong Polytechnic University,, Hong Kong ; Shiyou Yang

This paper explores the potential of polynomial chaos in robust designs of inverse problems. A fast numerical methodology based on combinations of polynomial chaos expansion and evolutionary algorithm is reported in this study. With the proposed methodology, polynomial chaos expansion is used as a stochastic response surface model for efficient computations of the expectancy metric of the objective function. Additional enhancements, such as the introduction of a new methodology for expected fitness assignment and probability feasibility model, a novel driving mechanism to bias the next iterations to search for both global and robust optimal solutions, are introduced. Numerical results on two case studies are reported to illustrate the feasibility and merits of the present work.

Published in:

IEEE Transactions on Magnetics  (Volume:48 ,  Issue: 2 )