By Topic

Fast Joint Estimation of Silhouettes and Dense 3D Geometry from Multiple Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kalin Kolev ; TU Munchen, Munich ; Thomas Brox ; Daniel Cremers

We propose a probabilistic formulation of joint silhouette extraction and 3D reconstruction given a series of calibrated 2D images. Instead of segmenting each image separately in order to construct a 3D surface consistent with the estimated silhouettes, we compute the most probable 3D shape that gives rise to the observed color information. The probabilistic framework, based on Bayesian inference, enables robust 3D reconstruction by optimally taking into account the contribution of all views. We solve the arising maximum a posteriori shape inference in a globally optimal manner by convex relaxation techniques in a spatially continuous representation. For an interactively provided user input in the form of scribbles specifying foreground and background regions, we build corresponding color distributions as multivariate Gaussians and find a volume occupancy that best fits to this data in a variational sense. Compared to classical methods for silhouette-based multiview reconstruction, the proposed approach does not depend on initialization and enjoys significant resilience to violations of the model assumptions due to background clutter, specular reflections, and camera sensor perturbations. In experiments on several real-world data sets, we show that exploiting a silhouette coherency criterion in a multiview setting allows for dramatic improvements of silhouette quality over independent 2D segmentations without any significant increase of computational efforts. This results in more accurate visual hull estimation, needed by a multitude of image-based modeling approaches. We made use of recent advances in parallel computing with a GPU implementation of the proposed method generating reconstructions on volume grids of more than 20 million voxels in up to 4.41 seconds.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 3 )