By Topic

Investigation on Simple Numeric Modeling of Anomalous Eddy Current Loss in Steel Plate Using Modified Conductivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanhui Gao ; Dept. of Electr. & Electron. Eng., Saga Univ., Saga, Japan ; Matsuo, Y. ; Muramatsu, K.

To calculate the iron loss in an electric machine accurately, the anomalous eddy current loss generated by domain wall motion should be considered. A simple numeric modeling of anomalous eddy current loss by modifying the conductivity of steel plates is sometimes used. However, investigation on this method in detail has not been carried out. In this paper, this method is investigated in two iron-loss models neglecting and including the skin effect and then applied to the loss calculation of various kinds of nonoriented and oriented silicon steel plates. Then, the dependence of the modified conductivity on the amplitude and frequency of the induction magnetic field for each material is obtained and the appropriate iron-loss model and method for modifying the conductivity are proposed for the nonoriented and oriented silicon steel plates. The calculated iron losses using the appropriate iron-loss model with modified conductivity are compared with the measured data. It is clarified that for nonoriented materials, the iron-loss model including the skin effect with constant modified conductivity shows good agreement. And for oriented materials, the model neglecting the skin effect with the modified conductivity depending on frequency is better.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 2 )