By Topic

PV system monitoring and performance of a grid connected PV power station located in Manchester-UK

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Natsheh, E.M. ; Sch. of Enginerring, Manchester Metropolitan Univ., Manchester, UK ; Blackhurs, E.J. ; Albarbar, A.

In the last two decades renewable resources have gained more attention due to continuing energy demand, along with the depletion in fossil fuel resources and their environmental effects to the planet. This paper presents a novel approach in monitoring PV power stations. The monitoring system enables system degradation early detection by calculating the residual difference between the model predicted and the actual measured power parameters. The model being derived using the MATLAB/SIMULINK software package and is designed with a dialog box to enable the user input of the PV system parameters. The performance of the developed monitoring system was examined and validated under different operating condition and faults e.g. dust, shadow and snow. Results were simulated and analyzed using the environmental parameters of irradiance and temperature. The irradiance and temperature data is gathered from a 28.8kW grid connected solar power system located on the tower block within the MMU campus in central Manchester. These real-time parameters are used as inputs of the developed PV model. Repeatability and reliability of the developed model performance were validated over a one and half year's period.

Published in:

Renewable Power Generation (RPG 2011), IET Conference on

Date of Conference:

6-8 Sept. 2011