By Topic

Spatial whitening framework for distributed estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Swarnendu Kar ; Dept. of Electrical Engineering and Computer Science, Syracuse University, NY, 13244, USA ; Pramod K. Varshney ; Hao Chen

Designing resource allocation strategies for power constrained sensor network in the presence of correlated data often gives rise to intractable problem formulations. In such situations, applying well-known strategies derived from conditional-independence assumption may turn out to be fairly suboptimal. In this paper, we address this issue by proposing an adjacency-based spatial whitening scheme, where each sensor exchanges its observation with their neighbors prior to encoding their own private information and transmitting it to the fusion center. We comment on the computational limitations for obtaining the optimal whitening transformation, and propose an iterative optimization scheme to achieve the same for large networks. We demonstrate the efficacy of the whitening framework by considering the example of bit-allocation for distributed estimation.

Published in:

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE International Workshop on

Date of Conference:

13-16 Dec. 2011