By Topic

The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li, Jinhua ; Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China ; Du, Jun ; Xu, Jianbin ; Chan, Helen L.W.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3678196 

Organic thin-film transistors based on a high mobility n-type semiconductor poly{[n,n9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)} P(NDI2OD-T2) and different polymer gate dielectrics are fabricated. The average electron mobility decreases from 0.76 to 0.08 cm2/Vs with the increase of the gate dielectric constant from 2.6 to 7.8. The P(NDI2OD-T2) film shows unconventional face-on molecular packing, which results in short distances and pronounced interactions between electrons and gate dielectric. Therefore, the decrease of the electron mobility with the increasing dielectric constant is attributed to the Fröhlich polaron effect for the interaction between electrons in the channel and ionic polarization cloud in the gate dielectric.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 3 )