By Topic

Efficient and scalable demand response for the smart power grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seung-Jun Kim ; Dept. of ECE, Univ. of Minnesota, Minneapolis, MN, USA ; Giannakis, G.B.

A demand response setup is considered entailing a set of appliances with deferrable and non-interruptible tasks. A mixed-integer linear programming model for scheduling the operational periods and power levels of the appliances is formulated in response to known dynamic pricing information with the objective of minimizing the total electricity cost and consumer dissatisfaction. A scalable algorithm yielding a near-optimal solution is developed by enforcing a separable structure, and using Lagrangian relaxation. Thus, the original problem is decomposed to per-appliance subproblems, which can be solved exactly based on dynamic programming. The proximal bundle method is employed to obtain a solution to the convexified version, which helps recovery of a primal feasible solution. Numerical tests validate the proposed approach.

Published in:

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE International Workshop on

Date of Conference:

13-16 Dec. 2011