Cart (Loading....) | Create Account
Close category search window
 

University Course Timetabling Using a Hybrid Harmony Search Metaheuristic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Al-Betar, M.A. ; Univ. Sains Malaysia (USM), Minden, Malaysia ; Khader, A.T. ; Zaman, M.

University course timetabling problem (UCTP) is considered to be a hard combinatorial optimization problem to assign a set of events to a set of rooms and timeslots. Although several methods have been investigated, due to the nature of UCTP, memetic computing techniques have been more effective. A key feature of memetic computing is the hybridization of a population-based global search and the local improvement. Such hybridization is expected to strike a balance between exploration and exploitation of the search space. In this paper, a memetic computing technique that is designed for UCTP, called the hybrid harmony search algorithm (HHSA), is proposed. In HHSA, the harmony search algorithm (HSA), which is a metaheuristic population-based method, has been hybridized by: 1) hill climbing, to improve local exploitation; and 2) a global-best concept of particle swarm optimization to improve convergence. The results were compared against 27 other methods using the 11 datasets of Socha et al. comprising five small, five medium, and one large datasets. The proposed method achieved the optimal solution for the small dataset with comparable results for the medium datasets. Furthermore, in the most complex and large datasets, the proposed method achieved the best results.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 5 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.