By Topic

Electromechanical Transconductance Properties of a GaN MEMS Resonator With Fully Integrated HEMT Transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Faucher, M. ; IEMN, Inst. of Electron., Microelectron. & Nanotechnol., Villeneuve-d''Ascq, France ; Cordier, Y. ; Werquin, M. ; Buchaillot, L.
more authors

We investigate the response of a GaN microelectromechanical resonator where the strain detection is performed by a resonant high-electron mobility transistor (R-HEMT). The R-HEMT gate located above the 2-DEG (two-dimensional electron gas) appears to enable a strong control of the electromechanical response with a gate voltage dependence close to a transconductance pattern. A quantitative approach based on the mobility of the carriers induced in the device by the piezoelectric response of the GaN buffer is proposed. These results show for the first time the electromechanical transconductance dependence versus external biasing and confirm that active piezoelectric transduction is governed by the AlGaN/GaN 2-DEG transport properties.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 2 )