By Topic

Simulation of Surface Plasmon Coupled Conjugate Polymer for Polymer Light-Emitting Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ye Won Yeo ; Dept. of Electr. Eng., KAIST, Daejeon, South Korea ; Cho, Kwan Hyun ; Jin Yeong Kim ; Kyung Cheol Choi

Since 1977, conjugated polymers have received attention as materials for display devices with a low-cost solution process, but the low efficiency of these materials has been considered as a drawback which should be overcome. Nowadays metal nanoparticles are inserted on the display device's cathode to overcome the low efficiency of the materials through the enhanced coupling between the Localized surface plasmon resonance (LSPR) and exciton in emitting material . In our previous work, conjugated polymer with an imprinted regular Ag-dot-array structure showed a 2.7-fold improvement of integrated photoluminescence (PL) intensity , but the result was not optimized. Therefore, in this study, we calculated the Ag-dot-array absorbance-peak shift in detail using finite-difference time-domain (FDTD) simulation and found the absorbance peak location which maximized photoluminescence (PL) intensity, depending on various Ag dot condition. The resulting information was applied to the previous structure . Thus, we reduced the trial and error of finding the optimized absorbance peak location and the imprint processing costs. The most important parameter of the Ag-dot-array absorbance peak was the lattice constant. Furthermore, we proved the indium tin oxide (ITO) waveguide effect in our structure using FDTD.

Published in:

Display Technology, Journal of  (Volume:8 ,  Issue: 2 )