By Topic

Nanostructured Polymeric Scaffolds for Orthopaedic Regenerative Engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meng Deng ; Dept. of Orthopaedic Surg., Univ. of Connecticut, Farmington, CT, USA ; James, R. ; Laurencin, C.T. ; Kumbar, S.G.

Successful regeneration necessitates the development of three-dimensional (3-D) tissue-inducing scaffolds that mimic the hierarchical architecture of native tissue extracellular matrix (ECM). Cells in nature recognize and interact with the surface topography they are exposed to via ECM proteins. The interaction of cells with nanotopographical features such as pores, ridges, groves, fibers, nodes, and their combinations has proven to be an important signaling modality in controlling cellular processes. Integrating nanotopographical cues is especially important in engineering complex tissues that have multiple cell types and require precisely defined cell-cell and cell-matrix interactions on the nanoscale. Thus, in a regenerative engineering approach, nanoscale materials/scaffolds play a paramount role in controlling cell fate and the consequent regenerative capacity. Advances in nanotechnology have generated a new toolbox for the fabrication of tissue-specific nanostructured scaffolds. For example, biodegradable polymers such as polyesters, polyphosphazenes, polymer blends and composites can be electrospun into ECM-mimicking matrices composed of nanofibers, which provide high surface area for cell attachment, growth, and differentiation. This review provides the fundamental guidelines for the design and development of nanostructured scaffolds for the regeneration of various tissue types in human upper and lower extremities such as skin, ligament, tendon, and bone. Examples focusing on the collective work of our laboratory in those areas are discussed to demonstrate the regenerative efficacy of this approach. Furthermore, preliminary strategies and significant challenges to integrate these individual tissues into one complex organ through regenerative engineering-based integrated graft systems are also discussed.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:11 ,  Issue: 1 )