By Topic

Hierarchical stochastic fast search motion estimation algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tedmori, S. ; King Hussein Sch. for Inf. Technol., Princess Sumaya Univ. for Technol., Al-Jubaiha, Jordan ; Al-Najdawi, N.

Many fast search motion estimation algorithms have been developed to reduce the computational cost required by full-search algorithms. Fast search motion estimation techniques often converge to a local minimum, providing a significant reduction in computational cost. The motion vector measurement process in fast search algorithms is subject to noise and matching errors. Therefore researchers have investigated the use of Kalman filtering in order to seek optimal estimates. In this work, the authors propose a new fast stochastic motion estimation technique that requires 5% of the total computations required by the full-search algorithm, and results in a quality that outperforms most of the well-known fast searching algorithms. The measured motion vectors are obtained using a simplified hierarchical search block-matching algorithm, and are used as the measurement part of the Kalman filter. As for the prediction part of the filter, it is assumed that the motion vector of a current block can be predicted from its four neighbouring blocks. Using the predicted and measured motion vectors, the best estimates for motion vectors are obtained. Using standard methods of accuracy measurements, results show that the performance of the proposed technique approaches that of the full-search algorithm.

Published in:

Computer Vision, IET  (Volume:6 ,  Issue: 1 )