By Topic

Exploring lag diversity in the high-order ambiguity function for polynomial phase signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhou, G.T. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Yang Wang

High-order ambiguity function (HAF) is an effective tool for retrieving coefficients of polynomial phase signals (PPS). The lag choice is dictated by conflicting requirements: a large lag improves estimation accuracy but drastically limits the range of the parameters that can be estimated. By using two (large) co-prime lags and solving linear Diophantine equations using the Euclidean algorithm, we are able to recover the PPS coefficients from aliased peak positions without-compromising the dynamic range and the estimation accuracy. Separating components of a multi-component PPS whose phase polynomials have very similar leading coefficients has been a challenging task, but can now be tackled easily with the two-lag approach. Numerical examples are presented to illustrate the effectiveness of our method

Published in:

Higher-Order Statistics, 1997., Proceedings of the IEEE Signal Processing Workshop on

Date of Conference:

21-23 Jul 1997