We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-Film Si Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Boccard, M. ; Photovoltaics and Thin film Electronics Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland ; Soderstrom, T. ; Cuony, P. ; Battaglia, C.
more authors

The quest for increased performances in thin-film silicon micromorph tandem devices nowadays requires an increase of current density. This can be achieved with thin cells by combining both robust cell design and efficient light management schemes. In this paper, we identify three key requirements for the transparent conductive oxide electrodes. First, strong light scattering into large angles is needed on the entire useful wavelength range: A front electrode texture with large enough features is shown to grant a high total current (typically >26 mA/cm2 with a 2.4-μm-thick absorber material), while sharp features are reported to allow for high top cell current (>13 mA/cm2) and reduced reflection at the ZnO/Si interface. Second, sufficiently smooth substrate features are needed to guarantee a high quality of the silicon active material, ensuring good and stable electrical properties (typically Voc around 1.4 V). Third, conduction and transparency of electrodes must be cleverly balanced, requiring high transparent conductive oxide mobility (∼50 cm ^2 /V/s) to maintain the sheet resistance below 30 Ω/sq while keeping absorption as low as possible. Optimization of these three key requirements using ZnO electrodes allowed us to realize high-efficiency micromorph devices with 13.5% initial and 11.5% stabilized efficiency.

Published in:

Photovoltaics, IEEE Journal of  (Volume:2 ,  Issue: 3 )