By Topic

Nanometer- and Micrometer-Scale Texturing for High-Efficiency Micromorph Thin-Film Silicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Boccard, Mathieu ; Lab. of Photovoltaics & Thin film Electron., Ecole Polytech. Fed. de Lausanne, Neuchatel, Switzerland ; Cuony, P. ; Battaglia, C. ; Hänni, S.
more authors

Optimized transparent conductive oxide front electrodes are vital to further increase the efficiency of thin-film silicon solar devices. We report details on the fabrication of multiscale textured zinc oxide substrates and their implementation in amorphous silicon/microcrystalline silicon tandem (micromorph) devices. Such substrates allow separate optimization of light trapping in the top and bottom cells, and efficient decoupling of transparency and conduction. We show in particular the need for sharp, nanoscale texturing for antireflection and light trapping in the top cell. We also show that smooth, micrometer-scale texturing can efficiently improve large-wavelength light management without degrading the quality of the silicon material grown on the substrate. By combining the appropriate morphologies, high currents can be reached in both the top and bottom subcells, while conserving the optimal electrical properties of the solar cells.

Published in:

Photovoltaics, IEEE Journal of  (Volume:2 ,  Issue: 2 )