By Topic

Three–Phase Time–Domain Simulation of Very Large Distribution Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Spitsa, V. ; Electr. & Comput. Eng. Dept., Polytech. Inst. of New York Univ., Brooklyn, NY, USA ; Salcedo, R. ; Xuanchang Ran ; Martinez, J.F.
more authors

This paper presents a detailed three-phase analysis of very large real-life distribution networks using the Electromagnetic Transients Program (EMTP). All main network elements, including relay protection devices, are accurately modeled considering their control sequences. Model validation is achieved with steady-state and transient simulations. The time-domain results are compared with field-validated load-flow simulations for several loading conditions including first and second contingencies. Simulations of fault conditions are also matched against known results at different locations around the network. Moreover, time-domain simulations of recorded transient events show very good agreement. Different transient scenarios are investigated. The new program can be used for the assessment of symmetrical as well as unsymmetrical faults, for studies of different switching scenarios, penetration of distributed generation, and smart grid technologies.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 2 )