By Topic

A Multistage Discriminative Model for Tumor and Lymph Node Detection in Thoracic Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang Song ; BMIT Res. Group, Univ. of Sydney, Sydney, NSW, Australia ; Weidong Cai ; Jinman Kim ; Feng, D.D.

Analysis of primary lung tumors and disease in regional lymph nodes is important for lung cancer staging, and an automated system that can detect both types of abnormalities will be helpful for clinical routine. In this paper, we present a new method to automatically detect both tumors and abnormal lymph nodes simultaneously from positron emission tomography-computed tomography thoracic images. We perform the detection in a multistage approach, by first detecting all potential abnormalities, then differentiate between tumors and lymph nodes, and finally refine the detected tumors for false positive reduction. Each stage is designed with a discriminative model based on support vector machines and conditional random fields, exploiting intensity, spatial and contextual features. The method is designed to handle a wide and complex variety of abnormal patterns found in clinical datasets, consisting of different spatial contexts of tumors and abnormal lymph nodes. We evaluated the proposed method thoroughly on clinical datasets, and encouraging results were obtained.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 5 )