Cart (Loading....) | Create Account
Close category search window
 

Capacity Region of Finite State Multiple-Access Channels With Delayed State Information at the Transmitters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Basher, U. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Shirazi, A. ; Permuter, H.H.

A single-letter characterization is provided for the capacity region of finite-state multiple access channels. The channel state is a Markov process, the transmitters have access to delayed state information, and channel state information is available at the receiver. The delays of the channel state information are assumed to be asymmetric at the transmitters. We apply the result to obtain the capacity region for a finite-state Gaussian MAC, and for a finite-state multiple-access fading channel. We derive power control strategies that maximize the capacity region for these channels.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.