Cart (Loading....) | Create Account
Close category search window

Clapping and broadcasting synchronization in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Shen, Xingfa ; Institute of Computer Application Technology, Hangzhou Dianzi University, Hangzhou 310018, China ; Qian, Xin ; Zhao, Bei ; Fang, Qiming
more authors

The Clapping and Broadcasting Synchronization (CBS) algorithm, which is specifically designed for large-scale sensor networks with low communication overhead and high synchronization accuracy, is introduced. The CBS protocol uses broadcasting rather than pairwise communication to accomplish synchronization. In the CBS scheme, the initial offset of local clocks can be successfully eliminated by the operation of clapping nodes, which leads to significant improvement in synchronization accuracy. The CBS protocol was implemented on the TelosB platform and its performance was evaluated in a variety of experiments. The results demonstrate that the CBS protocol outperforms the current state-of-the-art approach, the Flooding Time Synchronization Protocol (FTSP), in both single-hop and multi-hop scenarios in terms of synchronous precision and energy consumption. In multi-hop scenarios, the CBS algorithm keeps about 50% of its synchronization errors within 1 ms. In comparison, the FTSP keeps less than 7% of its synchronization errors within this range. In both single-hop and multi-hop scenarios, the CBS protocol is over 3.2 times more energy-efficient than the FTSP.

Published in:

Tsinghua Science and Technology  (Volume:16 ,  Issue: 6 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.