Cart (Loading....) | Create Account
Close category search window

ASCAT Surface State Flag (SSF): Extracting Information on Surface Freeze/Thaw Conditions From Backscatter Data Using an Empirical Threshold-Analysis Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Naeimi, V. ; German Remote Sensing Data Center (DFD), German Aerosp. Center (DLR, Wessling, Germany ; Paulik, C. ; Bartsch, A. ; Wagner, W.
more authors

Information on soil surface state is valuable for many applications such as climate studies and monitoring of permafrost regions. C-band scatterometer data indicate good potential to deliver information on surface freeze/thaw. Variation in state or amount of water contained in the soil causes significant alteration of dielectric properties of the soil which is markedly observable in scatterometer backscattered signal. A threshold-analysis method is developed to derive a set of parameters to be used in evaluating the normalized backscatter measurements through decision trees and anomaly detection modules for determination of freeze/thaw conditions. The model parameters are extracted from two years (2007-2008) backscatter data from ASCAT scatterometer onboard Metop satellite collocated with ECMWF ReAnalysis (ERA-Interim) soil temperature. Backscatter measurements are flagged as indicator of frozen/unfrozen surface, and snowmelt or existing water on the surface. The output product, so-called surface state flag (SSF), compares well with two modeled soil temperature data sets as well as the air temperature measurements from synoptic meteorological stations across the northern hemisphere. The SSF time series are also validated with soil temperature data available at four in situ observation sites in Siberian and Alaska regions showing the overall accuracy of about 80% to 90%.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.