Cart (Loading....) | Create Account
Close category search window
 

Scaling Energy Per Operation via an Asynchronous Pipeline

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marr, B. ; Raytheon Co., El Segundo, CA, USA ; Degnan, B. ; Hasler, P. ; Anderson, D.

Statistical analysis of computations per unit energy in processors over the last 30 years is given that illustrates a sharp reduction in the rate of energy efficiency improvements over the last several years resulting in the formation of an asymptotic “wall” with our dataset; we use the measure of giga multiply accumulates per Joule. We have developed an energy model which takes into account the realities of scaling, specifically for asynchronous systems. Studies of an energy efficient asynchronous pipeline show fabricated results of 17 Giga Operations per Joule in 0.6 μm at subthreshold when fully pipelined, and simulations at a more modern 65 nm process show a further order of magnitude improvement on that.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.