By Topic

Simultaneous Optimization of Droplet Routing and Control-Pin Mapping to Electrodes in Digital Microfluidic Biochips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Zhao ; Advanced Micro Devices, Sunnyvale, CA, USA ; Krishnendu Chakrabarty

The number of independent input pins used to control the electrodes in digital microfluidic “biochips” is an important cost-driver in the emerging market place, especially for disposable PCB devices that are being developed for clinical and point-of-care diagnostics. However, most prior work on pin-constrained biochip design considers droplet routing and the assignment of pins to electrodes as independent problems. In this paper, we propose optimization methods to solve the droplet routing and pin-constrained design problems concurrently. First, we formulate the co-optimization problem involving droplet routing and pin-mapping. Next, we present an integer linear programming-based optimization method to solve the droplet-routing and the pin-mapping design problems concurrently. The proposed co-optimization method minimizes the number of control pins. We also present an efficient heuristic approach to tackle the co-optimization problem. These methods overcome a major drawback of a recently proposed method, which leads to infeasible solutions involving conflicts in the mapping of pins to electrodes in different droplet-routing stages. The effectiveness of the proposed co-optimization method is demonstrated for two commercial biochips and an experimental university chip for multiplexed in-vitro diagnostics.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:31 ,  Issue: 2 )