Cart (Loading....) | Create Account
Close category search window
 

Simultaneous Optimization of Droplet Routing and Control-Pin Mapping to Electrodes in Digital Microfluidic Biochips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Zhao ; Adv. Micro Devices, Sunnyvale, CA, USA ; Chakrabarty, K.

The number of independent input pins used to control the electrodes in digital microfluidic “biochips” is an important cost-driver in the emerging market place, especially for disposable PCB devices that are being developed for clinical and point-of-care diagnostics. However, most prior work on pin-constrained biochip design considers droplet routing and the assignment of pins to electrodes as independent problems. In this paper, we propose optimization methods to solve the droplet routing and pin-constrained design problems concurrently. First, we formulate the co-optimization problem involving droplet routing and pin-mapping. Next, we present an integer linear programming-based optimization method to solve the droplet-routing and the pin-mapping design problems concurrently. The proposed co-optimization method minimizes the number of control pins. We also present an efficient heuristic approach to tackle the co-optimization problem. These methods overcome a major drawback of a recently proposed method, which leads to infeasible solutions involving conflicts in the mapping of pins to electrodes in different droplet-routing stages. The effectiveness of the proposed co-optimization method is demonstrated for two commercial biochips and an experimental university chip for multiplexed in-vitro diagnostics.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.