By Topic

The Signal Transmission Mechanism on the Surface of Human Body for Body Channel Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Joonsung Bae ; Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea ; Hyunwoo Cho ; Kiseok Song ; Hyungwoo Lee
more authors

The signal transmission mechanism on the surface of the human body is studied for the application to body channel communication (BCC). From Maxwell's equations, the complete equation of electrical field on the human body is developed to obtain a general BCC model. The mechanism of BCC consists of three parts according to the operating frequencies and channel distances: the quasi-static near-field coupling part, the reactive induction-field radiation part, and the surface wave far-field propagation part. The general BCC model by means of the near-field and far-field approximation is developed to be valid in the frequency range from 100 kHz to 100 MHz and distance up to 1.3 m based on the measurements of the body channel characteristics. Finally, path loss characteristics of BCC are formulated for the design of BCC systems and many potential applications.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 3 )