By Topic

Stability Analysis of Markovian Jump Stochastic BAM Neural Networks With Impulse Control and Mixed Time Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Quanxin Zhu ; Dept. of Math., Ningbo Univ., Ningbo, China ; Jinde Cao

This paper discusses the issue of stability analysis for a class of impulsive stochastic bidirectional associative memory neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time discrete-state Markov chain. Based on a novel Lyapunov-Krasovskii functional, the generalized Itô's formula, mathematical induction, and stochastic analysis theory, a linear matrix inequality approach is developed to derive some novel sufficient conditions that guarantee the exponential stability in the mean square of the equilibrium point. At the same time, we also investigate the robustly exponential stability in the mean square of the corresponding system with unknown parameters. It should be mentioned that our stability results are delay-dependent, which depend on not only the upper bounds of time delays but also their lower bounds. Moreover, the derivatives of time delays are not necessarily zero or smaller than one since several free matrices are introduced in our results. Consequently, the results obtained in this paper are not only less conservative but also generalize and improve many earlier results. Finally, two numerical examples and their simulations are provided to show the effectiveness of the theoretical results.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )