By Topic

Computer-Aided Lesion Diagnosis in Automated 3-D Breast Ultrasound Using Coronal Spiculation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tao Tan ; Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands ; Bram Platel ; Henkjan Huisman ; Clara I. Sanchez
more authors

A computer-aided diagnosis (CAD) system for the classification of lesions as malignant or benign in automated 3-D breast ultrasound (ABUS) images, is presented. Lesions are automatically segmented when a seed point is provided, using dynamic programming in combination with a spiral scanning technique. A novel aspect of ABUS imaging is the presence of spiculation patterns in coronal planes perpendicular to the transducer. Spiculation patterns are characteristic for malignant lesions. Therefore, we compute spiculation features and combine them with features related to echotexture, echogenicity, shape, posterior acoustic behavior and margins. Classification experiments were performed using a support vector machine classifier and evaluation was done with leave-one-patient-out cross-validation. Receiver operator characteristic (ROC) analysis was used to determine performance of the system on a dataset of 201 lesions. We found that spiculation was among the most discriminative features. Using all features, the area under the ROC curve (Az) was 0.93, which was significantly higher than the performance without spiculation features (Az=0.90, p=0.02). On a subset of 88 cases, classification performance of CAD (Az=0.90) was comparable to the average performance of 10 readers (Az=0.87).

Published in:

IEEE Transactions on Medical Imaging  (Volume:31 ,  Issue: 5 )