By Topic

Wireless Vision-Based Stabilization of Indoor Microhelicopter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tanaka, K. ; Dept. of Mech. Eng. & Intell. Syst., Univ. of Electro-Commun., Chofu, Japan ; Ohtake, H. ; Tanaka, M. ; Wang, H.O.

This paper presents wireless vision-based stabilization of an indoor microhelicopter via visual simultaneous localization and mapping. The so-called parallel tracking and mapping (PTAM) technique using a small single wireless camera on the helicopter is utilized to detect the position and attitude of the helicopter. We construct the measurement system that is able to calibrate the mapping between local coordinate system in the PTAM and world coordinate system and is able to realize noise detection and elimination. In addition, we design the guaranteed cost (stable) controller for the dynamics of the helicopter via a linear matrix inequality approach. Although path tracking control only via the small single wireless vision sensor is a quite difficult task, the control results demonstrate the utility of our approach.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:17 ,  Issue: 3 )