By Topic

Three-Dimensional Model-Based Human Detection in Crowded Scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu Wang ; Coll. of Inf. Sci. & Eng., North-eastern Univ., Shenyang, China ; Yung, N.H.C.

In this paper, the problem of human detection in crowded scenes is formulated as a maximum a posteriori problem, in which, given a set of candidates, predefined 3-D human shape models are matched with image evidence, provided by foreground extraction and probability of boundary, to estimate the human configuration. The optimal solution is obtained by decomposing the mutually related candidates into unoccluded and occluded ones in each iteration according to a graph description of the candidate relations and then only matching models for the unoccluded candidates. A candidate validation and rejection process based on minimum description length and local occlusion reasoning is carried out after each iteration of model matching. The advantage of the proposed optimization procedure is that its computational cost is much smaller than that of global optimization methods, while its performance is comparable to them. The proposed method achieves a detection rate of about 2% higher on a subset of images of the Caviar data set than the best result reported by previous works. We also demonstrate the performance of the proposed method using another challenging data set.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )