By Topic

Modeling and Characterization of Cantilever-Based MEMS Piezoelectric Sensors and Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Littrell, R. ; Univ. of Michigan, Ann Arbor, MI, USA ; Grosh, K.

Piezoelectric materials are used in a number of applications including those in microelectromechanical systems. These materials offer characteristics that provide unique advantages for both sensing and actuating. Common implementations of piezoelectric transduction involve the use of a cantilever with several layers, some of which are piezoelectric. Although most analyses of such a cantilever assume small piezoelectric coupling (SPC), the validity of this assumption has not been fully investigated. This paper presents closed-form expressions for the voltage developed across a piezoelectric layer in an N-layer cantilever used as a sensor (e.g., as a microphone) and for the displacement profile of an N-layer cantilever used as an actuator. This represents the first time these closed-form expressions have been presented without making the SPC assumption and are used to determine the validity of the this assumption. Furthermore, a new, more robust experimental technique for identifying the piezoelectric coefficient is demonstrated using an aluminum nitride (AlN) cantilever beam. The developed expressions are also used to predict the voltage across a piezoelectric layer in a beam containing AlN layers in response to a pressure excitation and are shown to be in close agreement with experimental results.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 2 )