By Topic

Real-Time FPGA-Based Multichannel Spike Sorting Using Hebbian Eigenfilters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Bo Yu ; Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing, P.R China ; Terrence Mak ; Xiangyu Li ; Fei Xia
more authors

Real-time multichannel neuronal signal recording has spawned broad applications in neuro-prostheses and neuro-rehabilitation. Detecting and discriminating neuronal spikes from multiple spike trains in real-time require significant computational efforts and present major challenges for hardware design in terms of hardware area and power consumption. This paper presents a Hebbian eigenfilter spike sorting algorithm, in which principal components analysis (PCA) is conducted through Hebbian learning. The eigenfilter eliminates the need of computationally expensive covariance analysis and eigenvalue decomposition in traditional PCA algorithms and, most importantly, is amenable to low cost hardware implementation. Scalable and efficient hardware architectures for real-time multichannel spike sorting are also presented. In addition, folding techniques for hardware sharing are proposed for better utilization of computing resources among multiple channels. The throughput, accuracy and power consumption of our Hebbian eigenfilter are thoroughly evaluated through synthetic and real spike trains. The proposed Hebbian eigenfilter technique enables real-time multichannel spike sorting, and leads the way towards the next generation of motor and cognitive neuro-prosthetic devices.

Published in:

IEEE Journal on Emerging and Selected Topics in Circuits and Systems  (Volume:1 ,  Issue: 4 )