Cart (Loading....) | Create Account
Close category search window

Energy efficient programming of nanoelectronic synaptic devices for large-scale implementation of associative and temporal sequence learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kuzum, D. ; Stanford Univ., Stanford, CA, USA ; Jeyasingh, R.G.D. ; Wong, H.-S.P.

A nanoscale, two-terminal device emulating plasticity and energy efficiency of biological synapses is a critical element for realizing brain-inspired computational systems and real-time brain simulators. In this work, we explore the use of phase change materials (PCM), widely used for memory applications, to build electronic synapses which implement synaptic plasticity with picojoule level energy consumption. Gradual switching characteristics and different spike schemes are discussed from implementation of synaptic plasticity and energy consumption perspectives. Our simulations demonstrate that a recurrent network of PCM synapses in a crossbar array can achieve brain-like associative and temporal sequence learning. Asymmetric plasticity is shown to transform temporal information into spatial information for sequence learning. Symmetric plasticity enables the storage and recall of certain patterns associatively by acting as a coincidence detector for neuronal activity.

Published in:

Electron Devices Meeting (IEDM), 2011 IEEE International

Date of Conference:

5-7 Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.