By Topic

High density 3D LSI technology using W/Cu hybrid TSVs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
M. Murugesan ; New Industry Creation Hatchery Center, NICHe, Japan ; H. Kino ; A. Hashiguchi ; C. Miyazaki
more authors

High density 3D LSI technology using W/Cu hybrid through silicon vias (TSVs) has been proposed. Major reliability issues attributed to W/Cu hybrid TSVs in high density 3D LSIs such as (i) thermo-mechanical stress exerted by W TSVs used for signal lines and Cu TSVs used for power/ground lines in active Si, (ii) external gettering (EG) role played by sub-surface defects in thinned Si substrate, and (iii) effect of local stress induced by μ-bumps on device characteristics are discussed. By annealing at the temperature of ≥300°C, both Cu (via size ≤10μm) and W (via size ≤1μm) square TSVs induce only compressive stress at small TSV spacing which will seriously affect the mobility in active Si area, and thus device characteristics. Large compressive stress not only leads to extrusion and peeling of TSV metal, but also die cracking, and it will adversely impact on the reliability of 3D-LSIs. Then it was proposed to increase the TSV pitch to larger than twice of TSV size to avoid these adverse effects in high density 3D-LSI. Sub-surface defects at dry polished (DP) surface well act as potential EG sites for Cu contamination. Influences of mechanical stress induced by μ-bumps on device characteristics were also evaluated and ultra-small size In-Au μ-bump technology has been developed to minimize the influences of μ-bumps on device characteristics.

Published in:

Electron Devices Meeting (IEDM), 2011 IEEE International

Date of Conference:

5-7 Dec. 2011