By Topic

Genetic-Neuro-Fuzzy Controllers for Second Order Control Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Danilo Pelusi ; Dipt. di Sci. delta Comun., Univ. of Teramo, Teramo, Italy

Overshoot, settling and rise time define the timing parameters of a control system. The main challenge is to attempt to reduce these parameters to achieve good control performances. The target is to obtain the optimal timing values. In this paper, three different approaches are presented to improve the control performances of second order control systems. The first approach is related to the design of a PID controller based on Ziegler-Nichols tuning formula. An optimal fuzzy controller optimized through Genetic Algorithms represents the second approach. Following this way, the best membership functions are chosen with the help of the darwinian theory of natural selection. The third approach uses the neural networks to achieve adaptive neuro-fuzzy controllers. In this way, the fuzzy controller assumes self-tuning capability. The results show that the designed PID controller has a very slow rise time. The genetic-fuzzy controller gives good values of overshoot and settling time. The best global results are achieved by neuro-fuzzy controller which presents good values of overshoot, settling and rise time. Moreover, our neuro-fuzzy controller improves the results of some conventional PID and fuzzy controllers.

Published in:

Computer Modeling and Simulation (EMS), 2011 Fifth UKSim European Symposium on

Date of Conference:

16-18 Nov. 2011