By Topic

Real-time priority processing on an embedded CE device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Consumer electronic products are increasingly becoming more open and flexible, which is achieved by replacing dedicate, single-function hardware components by software components running on programmable platforms. Scalable video algorithms (SVAs) using the novel principle of priority processing can guarantee real-time performance on these platforms even with limited resources. In this paper we describe the mapping of a priority-processing application on an embedded consumer platform comprising a general purpose processor and multiple stream processing elements. An application comprises one or more independent, competing priority-processing algorithms. These SVAs have a single, dedicated streaming processor at their disposal. Dynamic resource allocation is required to maximize the overall output quality of SVAs that are executed on a shared platform. To enable real-time processing of individual SVAs, we compare the performance of different implementations for dynamic-resource-allocation mechanisms. Finally, we show that priority processing achieves real-time performance even under tight resource constraints.

Published in:

IEEE Transactions on Consumer Electronics  (Volume:57 ,  Issue: 4 )