By Topic

Performance evaluation of a narrowband power line communication for smart grid with noise reduction technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mehdi Korki ; Swinburne Univ. of Technology, Australia ; Nasser Hosseinzadeh ; Taleb Moazzeni

Performance of the narrowband power line communication (PLC) is significantly degraded by the impulsive noise with very large amplitudes and short durations. In practical applications, the simple memoryless nonlinearity techniques (Clipping, Blanking, and Clipping/Blanking) are often used in order to mitigate the effect of the impulsive noise. In this paper, we propose an optimal Clipping/Blanking technique for impulsive noise reduction in narrowband (9-490 kHz) PLC system. This optimal technique is based on the minimum bit error rate (BER) search. To this end, we have derived the transfer function of a typical low voltage (LV) PLC network using the common bottom-up approach and scattering matrix method. Our simulation results, in terms of BER versus signal to noise ratio (SNR), show that the proposed technique slightly improves the BER performance of the narrowband PLC system for smart grid applications and two-way communication between smart meters and utilities1.

Published in:

IEEE Transactions on Consumer Electronics  (Volume:57 ,  Issue: 4 )