Cart (Loading....) | Create Account
Close category search window

Second-Order Sliding Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Beltran, B. ; Univ. of Brest, Brest, France ; El Hachemi Benbouzid, M. ; Ahmed-Ali, T.

This paper deals with power extraction maximization of a doubly fed induction generator (DFIG)-based wind turbine. These variable speed systems have several advantages over the traditional wind turbine operating methods, such as the reduction of the mechanical stress and an increase in the energy capture. To fully exploit this latest advantage, many control schemes have been developed for maximum power point tracking (MPPT) control schemes. In this context, this paper proposes a second-order sliding mode to control the wind turbine DFIG according to references given by an MPPT. Traditionally, the desired DFIG torque is tracked using control currents. However, the estimations used to define current references drive some inaccuracies mainly leading to nonoptimal power extraction. Therefore, using robust control, such as the second-order sliding mode, will allow one to directly track the DFIG torque leading to maximum power extraction. Moreover, the proposed control strategy presents attractive features such as chattering-free behavior (no extra mechanical stress), finite reaching time, and robustness with respect to external disturbances (grid) and unmodeled dynamics (generator and turbine). Simulations using the wind turbine simulator FAST and experiments on a 7.5-kW real-time simulator are carried out for the validation of the proposed high-order sliding mode control approach.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:27 ,  Issue: 2 )

Date of Publication:

June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.